

VoltShield[®]

Revision date: I June 2020

A chemically cross-linking polymeric resin reacted with a catalyst in an industrial solvent base for the durable, 'non-stick' surface protection of glass and glazed ceramic electrical insulators.

I. Uses

Specially formulated for the environment that electrical insulators are exposed to, higher resistance against moisture and alkalinity, withstands staining and / or discolouration making it easier to clean and keep clean.

2. Benefits

- Improved catalyst forms a multi-molecular, chemical bond with the surface for a more durable performance
- Increased amount of bonding sites for a more effective performance
- Reduces build-up of surface pollution on insulators so potentially increasing the insulator service life
- Reduces 'flashover'
- Improves the Alternating-Voltage Corona Inception

Physical Properties

Liquid State: Colour: Colourless Odour: Perceptible odour Evaporation rate: Moderate

Oxidising: Non-oxidising (by EC criteria)

Solubility in water: Not miscible

Most organic solvents Also soluble in:

Non-viscous Viscosity: Boiling point / range: 33-37°C 1.07-1.14 +/-0.05 Relative density:

Pack Sizes

10 x 500ml bottles 5 litre drums 25 litre drums

5. Coverage Rates - Typical

40-50m² per litre Manual spray: Hand application: 80-100m² per litre

Handling and Storage

Ensure there is sufficient ventilation of the area. Store in cool, well-ventilated area at a temperature not exceeding 25°C. Keep container tightly closed. Must only be kept in original packaging. Consult your own CoSHH Assessment.

Curing Rate

Normal Ambient Temperature: 35-45 minutes

Surface Operating Temperature

+3°C to +35°C

9. Health & Safety

Not classified as hazardous. If necessary, consult the relevant Safety Data Sheet available from Ritec on request.

10. RoHS Compliant

Product: Yes Packaging: Yes

II. PBT

Not identified as a PBT substance.

PERFORMANCE TESTING RESULTS

IEC 60060 - Tamworth HVL ref HV381 2003

On BR120 & BR140 Type Third Rail Insulator, significant increases of frequency flashover performance of 9-18%

IEC 60060-1 - Tamworth HVL ref HV383 2003

On 33kV Post Insulators (drawing FB2513 ref P11126) Increase flashover performance of 130kV against 116.3kV indicating an average performance gain of 12% on samples

IEC 60507 - Tamworth HVL

- (a) Kiesulghur Mixture, no adhesion
- (b) Kiesulghur Mixture @ 400%, no adhesion

BS EN 60587 - N. Evagelos M.Sc. Report REFLEX, University of Newcastle upon Tyne 2008

On toughened glass samples, Pass, showing an average of 15% increase of performance

BS EN 60507:1993 - FGH Mannheim Feb 2010

IEC 507:1991 Section 3, Pass, Salinities @ 160kgs/m3 Carried out on 400kV Post Insulators, meets requirements of IEC60060-1

GOST 6490-93 - Yuzhnouralsky Insulators and Fittings Plant AO (JSC) Testing Centre YuAIZ AO meeting requirements ISO / IEC17025:2005, Report by Mr A. Cheskidov Sept 2016

Vilrida PSV120B Suspension Insulators

Increase in Performance Short String Wet: +~30% Increase in Performance Short String Salt Spray Wet: +~30%

Increase in Performance Short String Salt Dry Value: +~40%

Important Note

Ritec International's products are guaranteed against defective materials and manufacture and are sold subject to its Terms & Conditions of Sale, copies of which may be obtained on request. Whilst Ritec endeavours to ensure that any advice, recommendation, specification or information is accurate and correct, it cannot – because it has not direct or continuous control over where or how its products are applied – accept any liability either directly or indirectly arising from the use of its products, whether or not in accordance with any advice, specification, recommendation or information given by it.

